Twenty-First-Century Changes in U.S. Regional Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns
نویسندگان
چکیده
Precipitation-gauge observations and atmospheric reanalysis are combined to develop an analoguemethod for detecting heavy precipitation events based on prevailing large-scale atmospheric conditions. Combinations of atmospheric variables for circulation (geopotential height and wind vector) and moisture (surface specific humidity, column and up to 500-hPa precipitable water) are examined to construct analogue schemes for the winter [December–February (DJF)] of the ‘‘Pacific Coast California’’ (PCCA) region and the summer [June–August (JJA)] of the Midwestern United States (MWST). The detection diagnostics of analogue schemes are calibrated with 1979–2005 and validated with 2006–14 NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). All analogue schemes are found to significantly improve upon MERRA precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events in theMWST.When evaluatedwith the late twentieth-century climatemodel simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), all analogue schemes produce model medians of heavy precipitation frequency that are more consistent with observations and have smaller intermodel discrepancies than model-based precipitation. Under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios, the CMIP5-based analogue schemes produce trends in heavy precipitation occurrence through the twenty-first century that are consistent with model-based precipitation, but with smaller intermodel disparity. Themedian trends in heavy precipitation frequency are positive forDJF over PCCAbut are slightly negative for JJA over MWST. Overall, the analyses highlight the potential of the analogue as a powerful diagnostic tool for model deficiencies and its complementarity to an evaluation of heavy precipitation frequency based on model precipitation alone.
منابع مشابه
Mid-Western U.S. Heavy Summer-Precipitation in Regional and Global Climate Models: The Impact on Model Skill and Consensus Through an Analogue Lens
Regional climate models (RCMs) in general can simulate the characteristics of heavy/extreme precipitation more accurately than general circulation models (GCMs) as a result of more realistic representation of topography and mesoscale processes. An analogue method of statistical downscaling, which identifies the resolved large-scale atmospheric conditions associated with heavy precipitation, is ...
متن کاملCentury-scale climate forcing of fire regimes in the American Southwest
A HOLOCENE RESEARCH PAPER Abstract: Interannual time-scale associations between fire occurrence and drought indices, the Southern Oscillation, and other synoptic patterns demonstrate that large-scale, long-term atmospheric features are precursors to regional fire activity. However, our knowledge of fire-climate relations over longer (century) timescales is fragmentary because of the rarity of c...
متن کاملHow Often Will It Rain?
Daily precipitation data from climate change simulations using the latest generation of coupled climate system models are analyzed for potential future changes in precipitation characteristics. For the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 (a low projection), A1B (a medium projection), and A2 (a high projection) during the twenty-first ...
متن کاملHeavy Daily Precipitation Frequency over the Contiguous United States: Sources of Climatic Variability and Seasonal Predictability
By matching large-scale patterns in climate fields with patterns in observed station precipitation, this work explores seasonal predictability of precipitation in the contiguous United States for all seasons. Although it is shown that total seasonal precipitation and frequencies of less-than-extreme daily precipitation events can be predicted with much higher skill, the focus of this study is o...
متن کاملAttribution of Seasonal and Regional Changes in Arctic Moisture Convergence
Spatial and temporal changes in high-latitude moisture convergence simulated by the National Center for Atmospheric Research Community Climate System Model, version 3 (CCSM3) are investigated. Moisture convergence is calculated using the aerological method with model fields of specific humidity and winds spanning the periods from 1960 to 1999 and 2070 to 2089. The twenty-first century incorpora...
متن کامل